Thermo-wetting and Friction Reduction Characterization of Microtextured Superhydrophobic Surfaces

نویسندگان

  • Tae Jin Kim
  • Carlos H. Hidrovo
چکیده

Microtextured superhydrophobic surfaces have become ubiquitous in a myriad of engineering applications. These surfaces have shown potential in friction reduction applications and could be poised to make a big impact in thermal management applications. For instance higher heat transfer rate with less pumping power might be achievable through the aid of superhydrophobic surfaces. However, past and current research on superhydrophobic surface has focused mainly on modifying either the chemical component or the roughness factors of such surfaces. The purpose of this paper is to account for the thermal effects of the heated fluid flowing in superhydrophobic microfluidic channels. Herein we characterize the wetting behavior as a function of temperature of microtextured superhydrophobic surfaces, for both active and passive thermal management applications. A series of PDMS microtextured samples were fabricated using micromachining and soft lithography techniques. Flow measurements were performed using the superhydrophobic microfluidic channel. The channel surface roughness was large enough to induce the Cassie-Baxter state, a phenomenon in which a liquid rests on top of a textured surface with a gas layer trapped underneath the liquid layer. This gas layer induces a two-phase flow, and friction reduction can be achieved for the liquid channel flow. With this channel, flow rates were measured by varying the equilibrium temperature of the substrate. The temperature in the constant pressure source was controlled by circulating the water through a water-bath. As the heating reached a certain threshold the curvature of the liquid-gas interface was reversed and dewetting of the penetrated liquid layer was observed. This result suggests that the Cassie state in fluid flow can be prolonged even under increased pressure drops by increasing the temperature in the

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Friction and Wetting Transitions of Magnetic Droplets on Micropillared Superhydrophobic Surfaces.

Reliable characterization of wetting properties is essential for the development and optimization of superhydrophobic surfaces. Here, the dynamics of superhydrophobicity is studied including droplet friction and wetting transitions by using droplet oscillations on micropillared surfaces. Analyzing droplet oscillations by high-speed camera makes it possible to obtain energy dissipation parameter...

متن کامل

From hydrophilic to superhydrophobic: fabrication of micrometer-sized nail-head-shaped pillars in diamond.

The hydrophobicity of microtextured diamond surfaces was investigated. Pillarlike structures were fabricated in both nanocrystalline diamond and microcrystalline diamond. By changing the surface termination of the textured diamond surface, we could switch between superhydrophobic surfaces and hydrophilic surfaces. Examined terminations were hydrogen, fluorine, and oxygen. To evaluate the wettin...

متن کامل

From Initial Nucleation to Cassie-Baxter State of Condensed Droplets on Nanotextured Superhydrophobic Surfaces

Understanding how droplet condensation happens plays an essential role for our fundamental insights of wetting behaviors in nature and numerous applications. Since there is a lack of study of the initial formation and growing processes of condensed droplets down to nano-/submicroscale, relevant underlying mechanisms remain to be explored. We report an in situ observation of vapor condensation o...

متن کامل

Wetting study of patterned surfaces for superhydrophobicity.

Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water-repellent properties. A number of studies have been carried out to produce artificial biomimetic roughness-induced hydrophobic surfaces. In general, both homogeneous and composite interfaces are possible on the produced surface. Silicon surfaces patterned with pillars of two d...

متن کامل

Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness.

Most naturally existing superhydrophobic surfaces have a dual roughness structure where the entire microtextured area is covered with nanoscale roughness. Despite numerous studies aiming to mimic the biological surfaces, there is a lack of understanding of the role of the nanostructure covering the entire surface. Here we measure and compare the nonwetting behavior of microscopically rough surf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011